Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.008
Filter
Add more filters

Publication year range
1.
Trop Anim Health Prod ; 56(3): 119, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602560

ABSTRACT

This study was carried out to examine the effects of ginger liquid extract (GLE) on the growth, immune response, antioxidative defence mechanism, and general health of Holstein calves. Sixteen calves (4-d old) were included in the experiment and randomly assigned to groups, and they were fed whole milk containing GLE at a rate of 0, 0.50, 0.72, and 1% of the milk amount consumed. Calves consuming 1% GLE were weaned at an earlier age and gained better body weight (BW) compared to the other groups. The group fed with 0.50% GLE consumed less daily starter than the other groups. The administration of GLE resulted in a non-significant decrease in fecal score (FS), the number of days with diarrhea (DDN), and illness (IDN) among the calves. Notably, the 1% GLE exhibited a significant inhibitory effect on the growth of E. coli, while its effect on the growth of other pathogenic bacteria was not statistically significant. Despite the non-significant reduction in malondialdehyde (MDA), total oxidative status (TOS), and oxidative stress index (OSI) values, the 1% GLE demonstrated support for antioxidative defence mechanism and immune response. The results indicated that 1% GLE can be effective in promoting the health of calves by enhancing their immune response and antioxidant capacity. This suggests that incorporating 1% GLE into their overall well-being, potentially leading to improved health outcomes and performance in calf rearing operations.


Subject(s)
Antioxidants , Zingiber officinale , Animals , Cattle , Escherichia coli , Immunity , Health Status , Plant Extracts/pharmacology
2.
Sci Rep ; 14(1): 7994, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580687

ABSTRACT

Cordyceps militaris (L.) Link (C. militaris) contains various beneficial substances, including polysaccharides (galactomannan), nucleotides (adenosine and cordycepin), cordycepic acid, amino acids, and sterols (ergosterol and beta-sitosterol). It also contains other essential nutrients, such as protein, vitamins (E, K, B1, B2, and B12), and minerals (potassium, sodium, calcium, magnesium, iron, zinc, and selenium). Due to the numerous health benefits of supplements and products containing C. militaris extract, their popularity has increased. However, the immunostimulant effect of C. militaris remains unclear. Therefore, this study developed a functional beverage from the submerged fermentation of C. militaris (FCM) and aimed to investigate the potential of FCM in healthy male and female volunteers in Phayao Province, Thailand. This study provides essential information for the development of healthy drink products. Healthy men and women were provided either FCM containing 2.85 mg of cordycepin or placebo for 8 weeks (n = 10 for each gender). The immune cell markers, immunoglobulins, and safety parameters were assessed initially at baseline and at 4 and 8 weeks. The NK cell activity markedly increased in the male FCM group from baseline (p = 0.049) to 4 weeks after receiving FCM. Compared with those in the placebo group, the NK activity in women who received FCM for 8 weeks significantly increased (p = 0.023) from baseline. Within-group analysis revealed that the IL-1ß levels were markedly reduced in the male FCM group (p = 0.049). Furthermore, the IL-6 levels decreased from baseline in the female FCM group (p = 0.047). The blood sugar, lipid, and safety indices were not different between the experimental groups. FCM can potentially be developed as an immune-boosting supplement without liver, kidney, or blood component toxicity.


Subject(s)
Cordyceps , Adult , Humans , Male , Female , Cordyceps/chemistry , Deoxyadenosines/pharmacology , Adenosine/metabolism , Adjuvants, Immunologic/pharmacology , Liver , Immunity
3.
Front Cell Infect Microbiol ; 14: 1331779, 2024.
Article in English | MEDLINE | ID: mdl-38510965

ABSTRACT

Background: Commercial foot-and-mouth disease (FMD) vaccines have limitations, such as local side effects, periodic vaccinations, and weak host defenses. To overcome these limitations, we developed a novel FMD vaccine by combining an inactivated FMD viral antigen with the small molecule isoprinosine, which served as an adjuvant (immunomodulator). Method: We evaluated the innate and adaptive immune responses elicited by the novel FMD vaccine involved both in vitro and in vivo using mice and pigs. Results: We demonstrated isoprinosine-mediated early, mid-term, and long-term immunity through in vitro and in vivo studies and complete host defense against FMD virus (FMDV) infection through challenge experiments in mice and pigs. We also elucidated that isoprinosine induces innate and adaptive (cellular and humoral) immunity via promoting the expression of immunoregulatory gene such as pattern recognition receptors [PRRs; retinoic acid-inducible gene (RIG)-I and toll like receptor (TLR)9], transcription factors [T-box transcription factor (TBX)21, eomesodermin (EOMES), and nuclear factor kappa B (NF-kB)], cytokines [interleukin (IL)-12p40, IL-23p19, IL-23R, and IL-17A)], and immune cell core receptors [cluster of differentiation (CD)80, CD86, CD28, CD19, CD21, and CD81] in pigs. Conclusion: These findings present an attractive strategy for constructing novel FMD vaccines and other difficult-to-control livestock virus vaccine formulations based on isoprinosine induced immunomodulatory functions.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Inosine Pranobex , Viral Vaccines , Animals , Mice , Swine , Adjuvants, Vaccine , Antibodies, Viral , Adjuvants, Immunologic , Interleukins , Immunity
4.
BMC Vet Res ; 20(1): 112, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519928

ABSTRACT

The present study evaluated the effect of two categories of feed additives on chicken performance through immunological and intestinal histo-morphometric measurements. A total of 150 one-day-old male broiler chicks (Cobb) were randomly assigned to three groups. Group I received a non-supplemented basal diet. While groups II and III were treated with a basal diet supplemented with oregano essential oil (OEO) and Bacillus subtilis, respectively, in water for 28 days. Blood samples were taken at 6, 18 and 28 days for hematological analysis, phagocytosis, lymphocyte proliferation and measuring antibody responses. Additionally, growth performance indices were recorded weekly. The results showed that groups supplemented with OEO and B. subtilis improved growth performance expressed by a significant increase in weight gain (P < 0.05), with a significant reduction (P < 0.05) in feed conversion ratio (FCR). Hematological findings indicated a significant increase in blood parameters as well as a significant increase in phagocytic % & phagocytic index at all time points with a greater probiotic effect. On the other hand, OEO produced a significant increase in lymphocyte proliferation at 18 & 28 days. Humoral immunity revealed a significant increase in serum antibody titer phytobiotic & probiotic-fed groups at time points of 18 & 28 days with a superior phytobiotic effect. The histological examination showed a significant increase in villi length, villi width, crypt depth & V/C ratio. In conclusion, these results indicated positive effects of B. subtilis & OEO on both growth and immunity and could be considered effective alternatives to the antibiotic.


Subject(s)
Oils, Volatile , Origanum , Probiotics , Animals , Male , Bacillus subtilis , Oils, Volatile/pharmacology , Chickens , Dietary Supplements/analysis , Diet/veterinary , Probiotics/pharmacology , Immunity , Animal Feed/analysis
5.
Viruses ; 16(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38543796

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) has affected the pork industry worldwide and during outbreaks the mortality of piglets has reached 100%. Lipid nanocarriers are commonly used in the development of immunostimulatory particles due to their biocompatibility and slow-release delivery properties. In this study, we developed a lipid nanoparticle (LNP) complex based on glycyrrhizinic acid (GA) and tested its efficacy as an adjuvant in mice immunized with the recombinant N-terminal domain (NTD) of porcine epidemic diarrhea virus (PEDV) spike (S) protein (rNTD-S). The dispersion stability analysis (Z-potential -27.6 mV) confirmed the size and charge stability of the LNP-GA, demonstrating that the particles were homogeneously dispersed and strongly anionic, which favors nanoparticles binding with the rNTD-S protein, which showed a slightly positive charge (2.11 mV) by in silico analysis. TEM image of LNP-GA revealed nanostructures with a spherical-bilayer lipid vesicle (~100 nm). The immunogenicity of the LNP-GA-rNTD-S complex induced an efficient humoral response 14 days after the first immunization (p < 0.05) as well as an influence on the cellular immune response by decreasing serum TNF-α and IL-1ß concentrations, which was associated with an anti-inflammatory effect.


Subject(s)
Coronavirus Infections , Liposomes , Nanoparticles , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Swine , Mice , Antibodies, Viral , Porcine epidemic diarrhea virus/genetics , Glycyrrhizic Acid/pharmacology , Spike Glycoprotein, Coronavirus , Adjuvants, Immunologic , Immunity , Recombinant Proteins , Lipids
6.
Res Vet Sci ; 171: 105226, 2024 May.
Article in English | MEDLINE | ID: mdl-38502998

ABSTRACT

This study aimed to investigate the effects of early or late feeding strategies and prebiotic, on immune responses and gut health during the early life stage of broiler chickens. A total of 240 day-old male broiler chicks were used in a 2 × 3 factorial arrangement of treatments that comprised 2 feeding strategies (early or late) and 3 levels of prebiotic (0, recommended dosage or three times the recommended dosage) in a completely randomized design with 4 pen replicates and 10 broilers per each. Compared to broiler chickens that had early access to feed, delayed access to feed resulted in an increased population of Escherichia coli and a decreased population of Lactobacillus spp. and Bifidobacterium spp. in the ileum (P < 0.05). Additionally, delayed access to feed led to a decrease in villus height, crypt depth, villus height: villus width ratio, goblet cell density, and mucin 2 gene expression in the ileum (P < 0.05). The supplementation of prebiotics in both the late and early feeding strategy groups resulted in increased villus height, crypt depth, goblet cell density, mucin 2 gene expression, and antibodies against Infectious Bursal Disease (IBD). Additionally, it led to an improvement in the foot web thickness index (P < 0.05). Furthermore, it resulted in a significant decrease in the population of Escherichia coli, while the populations of Lactobacillus spp. and Bifidobacterium spp. in the ileum were significantly increased (P < 0.05). Therefore, this study suggests that incorporating prebiotics in the starter diet can effectively enhance immune responses and promote gut health, regardless of the feeding strategy (early or late). In conclusion, this study demonstrates the potential benefits of incorporating prebiotics into poultry diets to alleviate the detrimental effects of delayed access to feed and improve gut health during the early life stage of broiler chickens.


Subject(s)
Chickens , Prebiotics , Animals , Male , Chickens/microbiology , Mucin-2 , Diet/veterinary , Immunity , Escherichia coli , Animal Feed/analysis , Dietary Supplements , Animal Nutritional Physiological Phenomena
7.
Int J Med Mushrooms ; 26(3): 27-40, 2024.
Article in English | MEDLINE | ID: mdl-38505901

ABSTRACT

In our previous study, we have established Russula pseudocyanoxantha as a unique species, playing a crucial role in indigenous diets through ages. The research also brought attention to bioactive potential of polysaccharide fraction extracted from the unexplored food using hot water. However, residue of the conventional process still contains therapeutic biopolymers that could further be utilized for pharmacological purposes instead of being discarded. Therefore, the current study aims to valorize the solid remnants, contributing to a deeper understanding of the novel taxon. Subsequently, the leftover was treated with cold alkali, leading to the preparation of a high-yield fraction (RP-CAP). Chemical characterization through FT-IR, GC-MS, HPTLC, and spectroscopy demonstrated presence of several monomers in the carbohydrate backbone, predominantly composed of ß-glucan. Furthermore, GPC chromatogram indicated presence of a homogeneous polymer with molecular weight of ~ 129.28 kDa. Subsequently, potent antioxidant activity was noted in terms of radical scavenging (O2·-, OH·, DPPH· and ABTS·+), chelating ability, reducing power and total antioxidant activity where EC50 values ranged from 472-3600 µg/mL. Strong immune-boosting effect was also evident, as the biopolymers stimulated murine macrophage cell proliferation, phagocytic activity, pseudopod formation, and NO as well as ROS synthesis particularly at the concentration of 100 µg/mL. In-depth analysis through RT-PCR revealed that the fraction stimulated synthesis of several inflammatory mediators, elucidating the mode of action through TLR/ NF-κB pathway. Therefore, the findings collectively suggest that RP-CAP possesses great potential to serve as a healthimproving component in functional food and pharmaceutical sectors.


Subject(s)
Agaricales , Basidiomycota , Animals , Mice , Antioxidants/pharmacology , Antioxidants/chemistry , Agaricales/chemistry , NF-kappa B/metabolism , Alkalies , Spectroscopy, Fourier Transform Infrared , Basidiomycota/metabolism , RAW 264.7 Cells , Polysaccharides/pharmacology , Polysaccharides/chemistry , Immunity , Biopolymers
8.
Int Immunopharmacol ; 131: 111912, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38522140

ABSTRACT

Water-soluble rhamnogalacturonan-I enriched citrus pectin (WRP) has promising effect on antimicrobial defense. We aim to determine whether the modified acidic (A) or neutral (B) WRP solutions can improve intestinal microbial dysbiosis in burn-injured mice. Male Balb/c mice were gavaged with WRPs at 80, 160, 320 mg/kg. Body weight daily for 21 days before exposed to thermal injury of 15 % total body surface area and mortality was monitored. Mice with 80 mg/kg WRPs were also subjected to fecal DNAs and T cell metabonomics analysis, intestinal and plasma glucagon-like peptide 1 (GLP-1) detection, plasma defensin, immunoglobin and intestinal barrier examinations at 1 and 3d postburn (p.b.). Burn-induced mortality was only improved by low dose WRP-A (P = 0.039). Both WRPs could prevent the dysbiosis of gut microbiota in burn injury by reducing the expansion of inflammation-promoting bacteria. Both WRPs suppressed ileum GLP-1 production at 1d p.b. (P = 0.002) and plasma GLP-1 levels at 3d p.b. (P = 0.013). Plasma GLP-1 level correlated closely with ileum GLP-1 production (P = 0.019) but negatively with microbiota diversity at 1d p.b. (P = 0.003). Intestinal T cell number was increased by both WRPs in jejunum at 3d p.b. However, the exaggerated splenic T cell metabolism in burn injury was reversed by both WRPs at 1d p.b. The burn-increased plasma defensin ß1 level was only reduced by WRP-B. Similarly, the intestinal barrier permeability was only rescued by WRP-B at 1d p.b. WRP-A rather than WRP-B could reduce burn-induced mortality in mice by suppressing intestinal GLP-1 secretion, restoring gut microbiota dysbiosis and improving adaptive immune response.


Subject(s)
Burns , Gastrointestinal Microbiome , Pectins , Mice , Male , Animals , Glucagon-Like Peptide 1 , Dysbiosis/drug therapy , Immunity , Burns/drug therapy , Burns/metabolism , Defensins
9.
Circ Res ; 134(8): 970-986, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38456277

ABSTRACT

BACKGROUND: While platelets have well-studied hemostatic functions, platelets are immune cells that circulate at the interface between the vascular wall and white blood cells. The physiological implications of these constant transient interactions are poorly understood. Activated platelets induce and amplify immune responses, but platelets may also maintain immune homeostasis in healthy conditions, including maintaining vascular integrity and T helper cell differentiation, meaning that platelets are central to both immune responses and immune quiescence. Clinical data have shown an association between low platelet counts (thrombocytopenia) and immune dysfunction in patients with sepsis and extracorporeal membrane oxygenation, further implicating platelets as more holistic immune regulators, but studies of platelet immune functions in nondisease contexts have had limited study. METHODS: We used in vivo models of thrombocytopenia and in vitro models of platelet and monocyte interactions, as well as RNA-seq and ATAC-seq (assay for transposase-accessible chromatin with sequencing), to mechanistically determine how resting platelet and monocyte interactions immune program monocytes. RESULTS: Circulating platelets and monocytes interact in a CD47-dependent manner to regulate monocyte metabolism, histone methylation, and gene expression. Resting platelet-monocyte interactions limit TLR (toll-like receptor) signaling responses in healthy conditions in an innate immune training-like manner. In both human patients with sepsis and mouse sepsis models, thrombocytopenia exacerbated monocyte immune dysfunction, including increased cytokine production. CONCLUSIONS: Thrombocytopenia immune programs monocytes in a manner that may lead to immune dysfunction in the context of sepsis. This is the first demonstration that sterile, endogenous cell interactions between resting platelets and monocytes regulate monocyte metabolism and pathogen responses, demonstrating platelets to be immune rheostats in both health and disease.


Subject(s)
Sepsis , Thrombocytopenia , Mice , Animals , Humans , Monocytes/metabolism , Thrombocytopenia/metabolism , Blood Platelets/metabolism , Immunity , Sepsis/metabolism , Platelet Activation
10.
Poult Sci ; 103(4): 103499, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38330889

ABSTRACT

Increased use of genetically modified (GM) plants in the food and feed industry has raised several concerns about the presence of unwanted genes in the food chain and potential associated health risks. In recent years, several studies have compared the nutrient contents of GM crops to conventional counterparts, and some have also tracked the fate of novel DNA fragments and proteins in the gastrointestinal (GIT) and their presence in several tissues. This study was conducted to investigate the fate of transgenic PHP19340A DNA fragment containing gm-fad2-1 (Soybean Event DP-3Ø5423-1) gene in digestive tract contents, blood, internal organs, and muscle tissues. The effects of feeding DP-3Ø5423-1 full-fat soybean meal (FFSBM) to broiler chickens on immune response and blood profiles were also evaluated on d 35. Day-old Ross 308 birds (n = 480) were randomly allocated to 24 floor pens in a 2 × 2 factorial arrangement with diet and gender as main factors. Birds were fed diets containing 20% of either DP-3Ø5423-1 or non-GM FFSBM for 35 d. Data were subjected to a 2-way ANOVA using the GLM procedure of JMP (Pro13). Based on PCR analysis, transgenic PHP19340A DNA fragment containing gm-fad2-1 gene was degraded throughout the digestive system to reach undetectable level in the cecal digesta. Moreover, there was no transgenic gene translocation to blood, organs, or muscle tissue. Feeding DP-3Ø5423-1 FFSBM to broilers had no effect on mRNA abundance of IL-1ß, IL-2, IL-6, IL-12B, IL-17A, IFNγ, TNFα, and NF-κB in the spleen or on blood profile. In conclusion, these findings indicate that the examined transgenic fragment in DP-3Ø5423-1 FFSBM progressively degraded in the GIT and did not translocate into blood or tissues. Along with the immune response and blood profile findings, it can be assumed that DP-3Ø5423-1 soybean is safe and unlikely to pose any health risks to broilers or consumers.


Subject(s)
Chickens , Glycine max , Animals , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Chickens/physiology , Diet/veterinary , Dietary Supplements , DNA/metabolism , Glycine max/genetics , Immunity , Plants, Genetically Modified/genetics , Random Allocation
11.
Article in English | MEDLINE | ID: mdl-38387739

ABSTRACT

Fish physiological health is often negatively impacted by high-temperature environments and there are few studies on how dietary lipids affect fish growth and physiology when exposed to heat stress. The main objective of this research was to examine the impact of dietary lipid levels on growth and physiological status of juvenile turbot (Scophthalmus maximus L.) and determine if dietary lipid concentration could alleviate the possible adverse effects of heat stress. Five diets containing 6.81%, 9.35%, 12.03%, 14.74%, and 17.08% lipid, respectively, were formulated and fed to turbot (initial weight 5.13 ± 0.02 g) under high-temperature conditions (24.0-25.0 °C). Meanwhile, the diet with 12.03% lipid (considered by prior work to be an optimal dietary lipid level) was fed to turbot of the same size at normal temperature. Results suggested that, among the different dietary lipid levels under high-temperature conditions, fish fed the optimal lipid (12.03%) exhibited better growth compared to non-optimal lipid groups, as evidenced by higher weight gain and specific growth rate. Simultaneously, the optimal lipid diet may better maintain lipid homeostasis, as attested by lower liver and serum lipid, along with higher liver mRNA levels of lipolysis-related genes (pgc1α, lipin1, pparα, lpl and hl) and lower levels of synthesis-related genes (lxr, fas, scd1, pparγ, dgat1 and dgat2). Also, the optimal lipid diet might mitigate oxidative damage by improving antioxidant enzyme activity, decreasing malondialdehyde levels, and up-regulating oxidation-related genes (sod1, sod2, cat, gpx and ho-1). Furthermore, the optimal lipid may enhance fish immunity, as suggested by the decrease in serum glutamic-oxalacetic/pyruvic transaminase activities, down-regulation of pro-inflammatory genes and up-regulation of anti-inflammation genes. Correspondingly, the optimal lipid level suppressed MAPK signaling pathway via decreased phosphorylation levels of p38, JNK and ERK proteins in liver. In summary, the optimal dietary lipid level facilitated better growth and physiological status in turbot under thermal stress.


Subject(s)
Antioxidants , Flatfishes , Animals , Antioxidants/metabolism , Lipid Metabolism , Flatfishes/physiology , Temperature , Diet , Dietary Fats , Immunity , Dietary Supplements/analysis , Animal Feed/analysis
12.
Res Vet Sci ; 170: 105181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38359649

ABSTRACT

This study aimed to evaluate the effects of dietary supplementation with EOS on growth performance, blood serum antioxidant status, immune response, and intestinal morphology of weaned piglets using a meta-analytical approach. The database included 31 studies from which the response variables of interest were obtained. All data were analyzed using a random effects model, and results were expressed as weighted mean differences between treatments supplemented with and without EOS. EOS supplementation increased (P < 0.001) average daily feed intake, average daily gain, and final body weight and decreased (P < 0.001) feed conversion ratio and diarrhea incidence. Lower (P = 0.001) serum malondialdehyde content and higher (P < 0.05) serum concentrations of superoxide dismutase, catalase, glutathione peroxidase, and total antioxidant capacity were observed in response to the dietary inclusion of EOS. EOS supplementation increased (P < 0.001) the serum concentration of immunoglobulins A, G, and M and decreased (P < 0.05) the serum concentration of tumor necrosis factor-α, interleukin-1ß, and interleukin-6. Greater (P ≤ 0.001) villus height (VH) was observed in the jejunum and ileum in response to the dietary inclusion of EOS. However, EOS supplementation did not affect (P > 0.05) crypt depth (CD) and decreased (P < 0.001) the VH/CD ratio in the duodenum, jejunum, and ileum. In conclusion, essential oils can be used as a dietary additive to improve growth performance and reduce the incidence of diarrhea in weaned piglets and, at the same time, improve the antioxidant status in blood serum, immune response, and intestinal morphology.


Subject(s)
Antioxidants , Oils, Volatile , Animals , Swine , Antioxidants/pharmacology , Oils, Volatile/pharmacology , Intestines , Dietary Supplements/analysis , Diarrhea/prevention & control , Diarrhea/veterinary , Immunity
13.
J Ethnopharmacol ; 325: 117836, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38301985

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psoriasis is an autoimmune disease characterized by dysfunctional T cells and dysregulated immune responses. Smilax glabra Roxb. (SGR) is a formulation used in Traditional Chinese Medicine for the treatment of inflammatory skin disorders, including psoriasis. This study explores the scientific basis for its use by examining the effects of SGR on T cell differentiation and insulin receptor signaling, relevant pathways implicated in the pathophysiology of psoriasis. AIM OF THE STUDY: This study investigates the therapeutic potential of SGR (a Chinese medicine) in psoriasis and its impact on T cell differentiation. MATERIALS AND METHODS: An integrated network pharmacology and bioinformatics approach was employed to elucidate the mechanisms of SGR in regulating T cell differentiation. A psoriasis mouse model was utilized to evaluate the effects of SGR on T cell subsets. Immunohistochemistry and gene expression analyses were conducted to investigate the modulation of insulin receptor signaling pathways by SGR. RESULTS: SGR treatment effectively reset the expression of various T cell subsets in the psoriasis mouse model, suggesting its ability to regulate T cell differentiation and immune function. Furthermore, SGR treatment inhibited insulin receptor signaling and downstream pathways, including PI3K/AKT and ERK, in psoriatic skin lesions. This indicates that SGR may exert its therapeutic effects through modulation of the insulin receptor signaling pathway. CONCLUSIONS: This study provides novel insights into the therapeutic potential of SGR in psoriasis. By modulating T cell differentiation and targeting the insulin receptor signaling pathway, SGR holds promise as a potential treatment option for psoriasis.


Subject(s)
Dermatitis , Psoriasis , Smilax , Mice , Animals , Smilax/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Receptor, Insulin , T-Lymphocytes/metabolism , Skin , Psoriasis/chemically induced , Psoriasis/drug therapy , Inflammation/pathology , Immunity , Disease Models, Animal , Mice, Inbred BALB C
14.
J Ethnopharmacol ; 325: 117838, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38310986

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Numerous studies have demonstrated that various traditional Chinese medicines (TCMs) exhibit potent anti-inflammatory effects against inflammatory diseases mediated through macrophage polarization and metabolic reprogramming. AIM OF THE STUDY: The objective of this review was to assess and consolidate the current understanding regarding the pathogenic mechanisms governing macrophage polarization in the context of regulating inflammatory diseases. We also summarize the mechanism action of various TCMs on the regulation of macrophage polarization, which may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization. MATERIALS AND METHODS: We conducted a comprehensive review of recently published articles, utilizing keywords such as "macrophage polarization" and "traditional Chinese medicines" in combination with "inflammation," as well as "macrophage polarization" and "inflammation" in conjunction with "natural products," and similar combinations, to search within PubMed and Google Scholar databases. RESULTS: A total of 113 kinds of TCMs (including 62 components of TCMs, 27 TCMs as well as various types of extracts of TCMs and 24 Chinese prescriptions) was reported to exert anti-inflammatory effects through the regulation of key pathways of macrophage polarization and metabolic reprogramming. CONCLUSIONS: In this review, we have analyzed studies concerning the involvement of macrophage polarization and metabolic reprogramming in inflammation therapy. TCMs has great advantages in regulating macrophage polarization in treating inflammatory diseases due to its multi-pathway and multi-target pharmacological action. This review may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Inflammation/drug therapy , Immunity , Macrophages
15.
Anim Biotechnol ; 35(1): 2309955, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38323808

ABSTRACT

Lysozymes, efficient alternative supplements to antibiotics, have several benefits in poultry production. In the present study, 120, one-day-old, Ross 308 broiler chickens of mixed sex, were allocated into 2 equal groups, lysozyme treated group (LTG) and lysozyme free group (LFG), to evaluate the efficacy of lysozyme (Lysonir®) usage via both drinking water (thrice) and spray (once). LTG had better (p = 0.042) FCR, and higher European production efficiency factor compared to LFG (p = 0.042). The intestinal integrity score of LTG was decreased (p = 0.242) compared to that of LFG; 0.2 vs. 0.7. Higher (p ≤ 0.001) intestinal Lactobacillus counts were detected in chickens of LTG. Decreased (p ≤ 0.001) IL-1ß and CXCL8 values were reported in LTG. The cellular immune modulation showed higher (p ≤ 0.001) opsonic activity (MΦ and phagocytic index) in LTG vs. LFG at 25 and 35 days. Also, higher (p ≤ 0.001) local, IgA, and humoral, HI titers, for both Newcastle, and avian influenza H5 viruses were found in LTG compared to LFG. In conclusion, microbial lysozyme could improve feed efficiency, intestinal integrity, Lactobacillus counts, anti-inflammatory, and immune responses in broiler chickens.


Exogenous aqueous and spray microbial lysozyme enhanced growth in commercial broiler chickensThe postbiotic effects of microbial lysozyme modulated intestinal integrity.Anti-inflammatory, as well as local, cellular, and humoral immune response were stimulated by lysozyme supplementation.


Subject(s)
Chickens , Muramidase , Animals , Chickens/physiology , Muramidase/pharmacology , Dietary Supplements , Lactobacillus , Immunity , Anti-Inflammatory Agents/pharmacology , Animal Feed/analysis , Diet/veterinary
16.
J Ethnopharmacol ; 326: 117865, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38369066

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucopyranoside (TSG) as the primary constituent of Polygonum multiflorum Thumb. (PM) possesses anti-oxidative, antihypercholesterolemic, anti-tumor and many more biological activities. The root of PM has been used as a tonic medicine for thousands of years. However, cases of PM-induced liver injury are occasionally reported, and considered to be related to the host immune status. AIM OF THE STUDY: The primary toxic elements and specific mechanisms PM causing liver damage are still not thoroughly clear. Our study aimed to investigate the influences of TSG on the immune response in idiosyncratic hepatotoxicity of PM. MATERIALS AND METHODS: The male C57BL/6 mice were treated with different doses of TSG and the alterations in liver histology, serum liver enzyme levels, proportions of T cells and cytokines secretion were evaluated by hematoxylin and eosin (HE), RNA sequencing, quantitative real time polymerase chain reaction (qRT-PCR), Flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA), respectively. Then, primary spleen cells from drug-naive mice were isolated and cultured with TSG in vitro. T cell subsets proliferation and cytokines secretion after treated with TSG were assessed by CCK8, FCM and ELISA. In addition, mice were pre-treated with anti-CD25 for depleting regulatory T cells (Tregs), and then administered with TSG. Liver functions and immunological alterations were analyzed to evaluate liver injury. RESULTS: Data showed that TSG induced liver damage, and immune cells infiltration in the liver tissues. FCM results showed that TSG could activate CD4+T and CD8+T in the liver. Results further confirmed that TSG notably up-regulated the levels of inflammatory cytokines including TNF-α, IFN-γ, IL-18, perforin and granzyme B in the liver tissues. Furthermore, based on transcriptomics profiles, some immune system-related pathways including leukocyte activation involved in inflammatory response, leukocyte cell-cell adhesion, regulation of interleukin-1 beta production, mononuclear cell migration, antigen processing and presentation were altered in TSG treated mice. CD8+T/CD4+T cells were also stimulated by TSG in vitro. Interestingly, increased proportion of Tregs was observed after TSG treatment in vitro and in vivo. Foxp3 and TGF-ß1 mRNA expressions were up-regulated in the liver tissues. Depletion of Tregs moderately enhanced TSG induced the secretion of inflammatory cytokines in serum. CONCLUSIONS: Our findings showed that TSG could trigger CD4+T and CD8+T cells proliferation, promote cytokines secretion, which revealed that adaptive immune response associated with the mild liver injury cause by TSG administration. Regulatory T cells (Tregs) mainly sustain immunological tolerance, and in this study, the progression of TSG induced liver injury was limited by Tregs. The results of our investigations allow us to preliminarily understand the mechanisms of PM related idiosyncratic hepatotoxicity.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Fallopia multiflora , Polygonum , Stilbenes , Mice , Male , Animals , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Mice, Inbred C57BL , Cytokines/genetics , Immunity , Stilbenes/toxicity , Stilbenes/therapeutic use
17.
Fish Shellfish Immunol ; 147: 109430, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325595

ABSTRACT

Iron is an essential cofactor in the fundamental metabolic pathways of organisms. Moderate iron intake can enhance animal growth performance, while iron overload increases the risk of pathogen infection. Although the impact of iron on the pathogen-host relationship has been confirmed in higher vertebrates, research in fish is extremely limited. The effects and mechanisms of different levels of iron exposure on the infection of Aeromonas hydrophila in largemouth bass (Micropterus salmoides) remain unclear. In this study, experimental diets were prepared by adding 0, 800, 1600, and 3200 mg/kg of FeSO4∙7H2O to the basal feed, and the impact of a 56-day feeding period on the mortality rate of largemouth bass infected with A. hydrophila was analyzed. Additionally, the relationships between mortality rate and tissue iron content, immune regulation, oxidative stress, iron homeostasis, gut microbiota, and tissue morphology were investigated. The results showed that the survival rate of largemouth bass infected with A. hydrophila decreased with increasing iron exposure levels. Excessive dietary iron intake significantly increased iron deposition in the tissues of largemouth bass, reduced the expression and activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, increased the content of lipid peroxidation product malondialdehyde, and thereby induced oxidative stress. Excessive iron supplementation could influence the immune response of largemouth bass by upregulating the expression of pro-inflammatory cytokines in the intestine and liver, while downregulating the expression of anti-inflammatory cytokines. Additionally, excessive iron intake could also affect iron metabolism by inducing the expression of hepcidin, disrupt intestinal homeostasis by interfering with the composition and function of the gut microbiota, and induce damage in the intestinal and hepatic tissues. These research findings provide a partial theoretical basis for deciphering the molecular mechanisms underlying the influence of excessive iron exposure on the susceptibility of largemouth bass to pathogenic bacteria.


Subject(s)
Bass , Animals , Iron, Dietary/metabolism , Aeromonas hydrophila , Iron/metabolism , Oxidative Stress , Immunity , Cytokines/metabolism , Homeostasis , Intestines
18.
Fish Shellfish Immunol ; 147: 109452, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360194

ABSTRACT

This study evaluated the impacts of nano-Se on the growth, immunity, antioxidant capacity, physiological parameters, gene expression, and stress resistance of fingerling Sobaity seabream (Sparidentex hasta). The fish with an average weight of 21.5 ± 0.1 g were divided into four treatment groups in triplicates that received one of the test diets supplemented with varying levels of nano-Se: 0 (control), 0.5 (Se-0.5), 1 (Se-1), and 2 (Se-2) mg/Kg for 60 days. The results showed that final weight, weight gain rate, specific growth rate, feed intake, and feed conversion ratio improved with significant linear and quadratic trends (P < 0.05) in response to nano-Se-supplemented diets, and the best values were measured in the Se-2 group. Superoxide dismutase activity level remained unaffected among the four groups (P > 0.05). Catalase activity increased in nano-Se-supplemented groups, with the highest level measured in fish fed the Se-0.5 diet. Glutathione peroxidase activity levels were not significantly different between the control and nano-Se groups, but the lowest malondialdehyde concentration was detected in the Se-2 group. Nano-Se had no marked effect on total plasma Ig levels; however, the highest lysozyme activity and alternative complement activity (ACH50) were observed in the Se-0.5 and Se-2 groups, respectively. No significant differences (P > 0.05) were observed in plasma total protein, albumin, globulin, triglyceride, and thyroid hormone (T3 and T4) contents among the groups. However, the lowest cholesterol and low-density lipoprotein values and the highest high-density lipoprotein concentration were measured in the Se-2 group. The Se-0.5 and Se-1 groups exhibited significantly lower levels of aspartate aminotransferase activity, and the lowest alkaline phosphatase activity level was detected in the Se-1 group. The expression level of insulin-like growth factor I gene in all nano-Se-fed groups was significantly higher than the control. Also, the expression of interleukin-1ß and lysozyme genes was significantly upregulated in nano-Se-supplemented groups, with the highest values in the Se-2 group. Following acute crowding stress, plasma cortisol and lactate levels at all post-stress time intervals were not significantly different among the experimental groups. Fish fed the Se-0.5 and Se-2 diets tended to have lower plasma glucose concentrations than other groups. In conclusion, dietary nano-Se at 2 mg/kg is recommended to promote growth performance and enhance antioxidant and immune parameters in Sobaity juveniles.


Subject(s)
Nanoparticles , Perciformes , Sea Bream , Selenium , Animals , Antioxidants/metabolism , Sea Bream/metabolism , Muramidase , Dietary Supplements , Diet , Immunity , Animal Feed/analysis
19.
Biomolecules ; 14(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38397458

ABSTRACT

Polyphenols, long-used components of medicinal plants, have drawn great interest in recent years as potential therapeutic agents because of their safety, efficacy, and wide range of biological effects. Approximately 75% of the world's population still use plant-based medicinal compounds, indicating the ongoing significance of phytochemicals for human health. This study emphasizes the growing body of research investigating the anti-adipogenic and anti-obesity functions of polyphenols. The functions of polyphenols, including phenylpropanoids, flavonoids, terpenoids, alkaloids, glycosides, and phenolic acids, are distinct due to changes in chemical diversity and structural characteristics. This review methodically investigates the mechanisms by which naturally occurring polyphenols mediate obesity and metabolic function in immunomodulation. To this end, hormonal control of hunger has the potential to inhibit pro-obesity enzymes such as pancreatic lipase, the promotion of energy expenditure, and the modulation of adipocytokine production. Specifically, polyphenols affect insulin, a hormone that is essential for regulating blood sugar, and they also play a role, in part, in a complex web of factors that affect the progression of obesity. This review also explores the immunomodulatory properties of polyphenols, providing insight into their ability to improve immune function and the effects of polyphenols on gut health, improving the number of commensal bacteria, cytokine production suppression, and immune cell mediation, including natural killer cells and macrophages. Taken together, continuous studies are required to understand the prudent and precise mechanisms underlying polyphenols' therapeutic potential in obesity and immunomodulation. In the interim, this review emphasizes a holistic approach to health and promotes the consumption of a wide range of foods and drinks high in polyphenols. This review lays the groundwork for future developments, indicating that the components of polyphenols and their derivatives may provide the answer to urgent worldwide health issues. This compilation of the body of knowledge paves the way for future discoveries in the global treatment of pressing health concerns in obesity and metabolic diseases.


Subject(s)
Alkaloids , Polyphenols , Humans , Polyphenols/pharmacology , Polyphenols/therapeutic use , Polyphenols/metabolism , Obesity/metabolism , Flavonoids , Immunity
20.
J Agric Food Chem ; 72(7): 3469-3482, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38329061

ABSTRACT

Turmeric, a traditional medicinal herb, is commonly used as a dietary and functional ingredient. This study aimed to investigate the effect of turmeric polysaccharides (TPs) on intestinal immunity and gut microbiota in cyclophosphamide (Cy)-induced immunosuppressed BALB/c mice. We verified that the oral administration of TPs-0 and TPs-3 (200 and 400 mg/kg, bw) improved thymus and spleen indexes, increased the whole blood immune cells (WBC) and lymph count index, and stimulated the secretion of serum immunoglobulin IgG. More importantly, TPs-0 and TPs-3 could repair intestinal immune damage and reduce intestinal inflammation. The specific mechanism is ameliorating the intestinal pathological damage, promoting CD4+ T cell secretion, regulating the expression of related cytokines, and reducing the level of critical proteins in the NF-κB/iNOS pathway. Interestingly, the intake of TPs-0 and TPs-3 significantly increased the content of short-chain fatty acids (SCFAs). Moreover, TPs-0 and TPs-3 relieved the intestinal microbiota disorder via the proliferation of the abundance of Lactobacillus and Bacteroides and the inhibition of Staphylococcus. Cumulatively, our study suggests that TPs-0 and TPs-3 can relieve intestinal immune damage by repairing the immune barrier and regulating intestinal flora disorders. TPs have potential applications for enhancing immunity as a functional food.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Curcuma , Cyclophosphamide , Mice, Inbred BALB C , Immunity , Polysaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL